Back to Integrations
integration integration
integration Postgres Chat Memory node

Integrate Postgres Chat Memory with 500+ apps and services

Unlock Postgres Chat Memory’s full potential with n8n, connecting it to similar AI apps and over 1000 other services. Automate AI workflows by integrating, training, and deploying models across various platforms. Create adaptable and scalable workflows between Postgres Chat Memory and your stack. All within a building experience you will love.

Create workflows with Postgres Chat Memory integrations

797 integrations
Sort by:
Popularity
NameOldestNewest

Popular ways to use Postgres Chat Memory integration

HTTP Request node
Merge node
Postgres node
+18

WordPress - AI Chatbot to enhance user experience - with Supabase and OpenAI

This is the first version of a template for a RAG/GenAI App using WordPress content. As creating, sharing, and improving templates brings me joy 😄, feel free to reach out on LinkedIn if you have any ideas to enhance this template! How It Works This template includes three workflows: Workflow 1**: Generate embeddings for your WordPress posts and pages, then store them in the Supabase vector store. Workflow 2**: Handle upserts for WordPress content when edits are made. Workflow 3**: Enable chat functionality by performing Retrieval-Augmented Generation (RAG) on the embedded documents. Why use this template? This template can be applied to various use cases: Build a GenAI application that requires embedded documents from your website's content. Embed or create a chatbot page on your website to enhance user experience as visitors search for information. Gain insights into the types of questions visitors are asking on your website. Simplify content management by asking the AI for related content ideas or checking if similar content already exists. Useful for internal linking. Prerequisites Access to Supabase for storing embeddings. Basic knowledge of Postgres and pgvector. A WordPress website with content to be embedded. An OpenAI API key Ensure that your n8n workflow, Supabase instance, and WordPress website are set to the same timezone (or use GMT) for consistency. Workflow 1 : Initial Embedding This workflow retrieves your WordPress pages and posts, generates embeddings from the content, and stores them in Supabase using pgvector. Step 0 : Create Supabase tables Nodes : Postgres - Create Documents Table: This table is structured to support OpenAI embedding models with 1536 dimensions Postgres - Create Workflow Execution History Table These two nodes create tables in Supabase: The documents table, which stores embeddings of your website content. The n8n_website_embedding_histories table, which logs workflow executions for efficient management of upserts. This table tracks the workflow execution ID and execution timestamp. Step 1 : Retrieve and Merge WordPress Pages and Posts Nodes : WordPress - Get All Posts WordPress - Get All Pages Merge WordPress Posts and Pages These three nodes retrieve all content and metadata from your posts and pages and merge them. Important: ** **Apply filters to avoid generating embeddings for all site content. Step 2 : Set Fields, Apply Filter, and Transform HTML to Markdown Nodes : Set Fields Filter - Only Published & Unprotected Content HTML to Markdown These three nodes prepare the content for embedding by: Setting up the necessary fields for content embeddings and document metadata. Filtering to include only published and unprotected content (protected=false), ensuring private or unpublished content is excluded from your GenAI application. Converting HTML to Markdown, which enhances performance and relevance in Retrieval-Augmented Generation (RAG) by optimizing document embeddings. Step 3: Generate Embeddings, Store Documents in Supabase, and Log Workflow Execution Nodes: Supabase Vector Store Sub-nodes: Embeddings OpenAI Default Data Loader Token Splitter Aggregate Supabase - Store Workflow Execution This step involves generating embeddings for the content and storing it in Supabase, followed by logging the workflow execution details. Generate Embeddings: The Embeddings OpenAI node generates vector embeddings for the content. Load Data: The Default Data Loader prepares the content for embedding storage. The metadata stored includes the content title, publication date, modification date, URL, and ID, which is essential for managing upserts. ⚠️ Important Note : Be cautious not to store any sensitive information in metadata fields, as this information will be accessible to the AI and may appear in user-facing answers. Token Management: The Token Splitter ensures that content is segmented into manageable sizes to comply with token limits. Aggregate: Ensure the last node is run only for 1 item. Store Execution Details: The Supabase - Store Workflow Execution node saves the workflow execution ID and timestamp, enabling tracking of when each content update was processed. This setup ensures that content embeddings are stored in Supabase for use in downstream applications, while workflow execution details are logged for consistency and version tracking. This workflow should be executed only once for the initial embedding. Workflow 2, described below, will handle all future upserts, ensuring that new or updated content is embedded as needed. Workflow 2: Handle document upserts Content on a website follows a lifecycle—it may be updated, new content might be added, or, at times, content may be deleted. In this first version of the template, the upsert workflow manages: Newly added content** Updated content** Step 1: Retrieve WordPress Content with Regular CRON Nodes: CRON - Every 30 Seconds Postgres - Get Last Workflow Execution WordPress - Get Posts Modified After Last Workflow Execution WordPress - Get Pages Modified After Last Workflow Execution Merge Retrieved WordPress Posts and Pages A CRON job (set to run every 30 seconds in this template, but you can adjust it as needed) initiates the workflow. A Postgres SQL query on the n8n_website_embedding_histories table retrieves the timestamp of the latest workflow execution. Next, the HTTP nodes use the WordPress API (update the example URL in the template with your own website’s URL and add your WordPress credentials) to request all posts and pages modified after the last workflow execution date. This process captures both newly added and recently updated content. The retrieved content is then merged for further processing. Step 2 : Set fields, use filter Nodes : Set fields2 Filter - Only published and unprotected content The same that Step 2 in Workflow 1, except that HTML To Makrdown is used in further Step. Step 3: Loop Over Items to Identify and Route Updated vs. Newly Added Content Here, I initially aimed to use 'update documents' instead of the delete + insert approach, but encountered challenges, especially with updating both content and metadata columns together. Any help or suggestions are welcome! :) Nodes: Loop Over Items Postgres - Filter on Existing Documents Switch Route existing_documents (if documents with matching IDs are found in metadata): Supabase - Delete Row if Document Exists: Removes any existing entry for the document, preparing for an update. Aggregate2: Used to aggregate documents on Supabase with ID to ensure that Set Fields3 is executed only once for each WordPress content to avoid duplicate execution. Set Fields3: Sets fields required for embedding updates. Route new_documents (if no matching documents are found with IDs in metadata): Set Fields4: Configures fields for embedding newly added content. In this step, a loop processes each item, directing it based on whether the document already exists. The Aggregate2 node acts as a control to ensure Set Fields3 runs only once per WordPress content, effectively avoiding duplicate execution and optimizing the update process. Step 4 : HTML to Markdown, Supabase Vector Store, Update Workflow Execution Table The HTML to Markdown node mirrors Workflow 1 - Step 2. Refer to that section for a detailed explanation on how HTML content is converted to Markdown for improved embedding performance and relevance. Following this, the content is stored in the Supabase vector store to manage embeddings efficiently. Lastly, the workflow execution table is updated. These nodes mirros the **Workflow 1 - Step 3 nodes. Workflow 3 : An example of GenAI App with Wordpress Content : Chatbot to be embed on your website Step 1: Retrieve Supabase Documents, Aggregate, and Set Fields After a Chat Input Nodes: When Chat Message Received Supabase - Retrieve Documents from Chat Input Embeddings OpenAI1 Aggregate Documents Set Fields When a user sends a message to the chat, the prompt (user question) is sent to the Supabase vector store retriever. The RPC function match_documents (created in Workflow 1 - Step 0) retrieves documents relevant to the user’s question, enabling a more accurate and relevant response. In this step: The Supabase vector store retriever fetches documents that match the user’s question, including metadata. The Aggregate Documents node consolidates the retrieved data. Finally, Set Fields organizes the data to create a more readable input for the AI agent. Directly using the AI agent without these nodes would prevent metadata from being sent to the language model (LLM), but metadata is essential for enhancing the context and accuracy of the AI’s response. By including metadata, the AI’s answers can reference relevant document details, making the interaction more informative. Step 2: Call AI Agent, Respond to User, and Store Chat Conversation History Nodes: AI Agent** Sub-nodes: OpenAI Chat Model Postgres Chat Memories Respond to Webhook** This step involves calling the AI agent to generate an answer, responding to the user, and storing the conversation history. The model used is gpt4-o-mini, chosen for its cost-efficiency.
dataki
Dataki
HTTP Request node
Webhook node
Respond to Webhook node
+7

AI Agent to chat with you Search Console Data, using OpenAI and Postgres

AI Agent to Chat with Your Search Console Data This AI Agent enables you to interact with your Search Console data through a chat interface. Each node is documented within the template, providing sufficient information for setup and usage. You will also need to configure Search Console OAuth credentials. Follow this n8n documentation to set up the OAuth credentials. Important Notes Correctly Configure Scopes for Search Console API Calls It’s essential to configure the scopes correctly in your Google Search Console API OAuth2 credentials. Incorrect configuration can cause issues with the refresh token, requiring frequent reconnections. Below is the configuration I use to avoid constant re-authentication: Of course, you'll need to add your client_id and client_secret from the Google Cloud Platform app you created to access your Search Console data. Configure Authentication for the Webhook Since the webhook will be publicly accessible, don’t forget to set up authentication. I’ve used Basic Auth, but feel free to choose the method that best meets your security requirements. 🤩💖 Example of awesome things you can do with this AI Agent
dataki
Dataki
Postgres Chat Memory node

About Postgres Chat Memory

Related categories

Similar integrations

  • Wikipedia node
  • OpenAI Chat Model node
  • Zep Vector Store node
  • Pinecone Vector Store node
  • Embeddings OpenAI node
  • Supabase: Insert node
  • OpenAI node
  • Default Data Loader node

Over 3000 companies switch to n8n every single week

Connect Postgres Chat Memory with your company’s tech stack and create automation workflows

in other news I installed @n8n_io tonight and holy moly it’s good

it’s compatible with EVERYTHING

We're using the @n8n_io cloud for our internal automation tasks since the beta started. It's awesome! Also, support is super fast and always helpful. 🤗

Last week I automated much of the back office work for a small design studio in less than 8hrs and I am still mind-blown about it.

n8n is a game-changer and should be known by all SMBs and even enterprise companies.

FAQ about Postgres Chat Memory integrations

  • How can I set up Postgres Chat Memory integration in n8n?

      To use Postgres Chat Memory integration in n8n, start by adding the Postgres Chat Memory node to your workflow. You'll need to authenticate your Postgres Chat Memory account using supported authentication methods. Once connected, you can choose from the list of supported actions or make custom API calls via the HTTP Request node, for example: make sure to configure the node settings according to your specific use case, such as selecting the appropriate database and settings for your queries. After that, connect the node to other nodes in your workflow to pass data seamlessly. Test the workflow to ensure everything is functioning as intended before finalizing it.

  • Do I need any special permissions or API keys to integrate Postgres Chat Memory with n8n?

  • Can I combine Postgres Chat Memory with other apps in n8n workflows?

  • What are some common use cases for Postgres Chat Memory integrations with n8n?

  • How does n8n’s pricing model benefit me when integrating Postgres Chat Memory?

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon