HTTP Request node
Slack node
+2

Google Calendar to Slack Status and Philips Hue

Published 2 years ago

Template description

I'm currently trialing a 4 day work week for all staff at my company, and one of the major impacts on productivity is interruptions.

As such, I opted to use N8N to create a workflow to monitor my Google Calendar and when an event starts, to update my Slack status with an emote and the title of the calendar task. Additionally I opted to include to change the colour of Philips Hue lamp located in my living room where my wife is currently working so she know's if she can interrupt me or not.

My calendar is built on the theory behind the Diary Detox system and as such the Slack Status reflect the colours involved. This was achieved using the emote aliases for the relevant colour circles.

4DW Colours.png

The Philips Hue lamp status is changed via the local API with Home Assistant. This is a very similiar process to controlling it with something like the Streamdeck, but the workflow calls the Webhook instead of the Streamdeck. This process can be found in lots of Youtube videos such as this.

This gives my wife a very quick and easy way to know if she can interrupt me in my office (when the lights are Green or Blue) or when I'm busy (Red).

RedGreenLight.png

Please Note: The above images are not intended to be an incentive to create your own Squid Games.

Additionally, when integrating Slack with N8N, there are 2 x APIs which can be used. Typically the Bot User OAuth Token is used, however in order for your Status to be updated, the User OAuth Token must be used with the users.profile:read and users.profile:write permissions enabled.

For clarity, I have removed the Webhooks from the Workflow as this would allow any person to control my lights. These can be inserted in the HTTP Request nodes. Each node responds to a different automation within the Home Assistant infrastructure.

Acknowledgement: I would also credit Jon (Discord) aka 8668 (Workflows) for writing the Function node which turns the ColorID into a named variable.

Share Template

More Building Blocks workflow templates

Webhook node
Respond to Webhook node

Creating an API endpoint

Task: Create a simple API endpoint using the Webhook and Respond to Webhook nodes Why: You can prototype or replace a backend process with a single workflow Main use cases: Replace backend logic with a workflow
jon-n8n
Jonathan
Customer Datastore (n8n training) node

Very quick quickstart

Want to learn the basics of n8n? Our comprehensive quick quickstart tutorial is here to guide you through the basics of n8n, step by step. Designed with beginners in mind, this tutorial provides a hands-on approach to learning n8n's basic functionalities.
deborah
Deborah
HTTP Request node
Item Lists node

Pulling data from services that n8n doesn’t have a pre-built integration for

You still can use the app in a workflow even if we don’t have a node for that or the existing operation for that. With the HTTP Request node, it is possible to call any API point and use the incoming data in your workflow Main use cases: Connect with apps and services that n8n doesn’t have integration with Web scraping How it works This workflow can be divided into three branches, each serving a distinct purpose: 1.Splitting into Items (HTTP Request - Get Mock Albums): The workflow initiates with a manual trigger (On clicking 'execute'). It performs an HTTP request to retrieve mock albums data from "https://jsonplaceholder.typicode.com/albums." The obtained data is split into items using the Item Lists node, facilitating easier management. 2.Data Scraping (HTTP Request - Get Wikipedia Page and HTML Extract): Another branch of the workflow involves fetching a random Wikipedia page using an HTTP request to "https://en.wikipedia.org/wiki/Special:Random." The HTML Extract node extracts the article title from the fetched Wikipedia page. 3.Handling Pagination (The final branch deals with handling pagination for a GitHub API request): It sends an HTTP request to "https://api.github.com/users/that-one-tom/starred," with parameters like the page number and items per page dynamically set by the Set node. The workflow uses conditions (If - Are we finished?) to check if there are more pages to retrieve and increments the page number accordingly (Set - Increment Page). This process repeats until all pages are fetched, allowing for comprehensive data retrieval.
jon-n8n
Jonathan
Merge node

Joining different datasets

Task: Merge two datasets into one based on matching rules Why: A powerful capability of n8n is to easily branch out the workflow in order to process different datasets. Even more powerful is the ability to join them back together with SQL-like joining logic. Main use cases: Appending data sets Keep only new items Keep only existing items
jon-n8n
Jonathan
GitHub node
HTTP Request node
Merge node
+11

Back Up Your n8n Workflows To Github

This workflow will backup your workflows to Github. It uses the public api to export all of the workflow data using the n8n node. It then loops over the data checks in Github to see if a file exists that uses the workflow name. Once checked it will then update the file on Github if it exists, Create a new file if it doesn't exist and if it's the same it will ignore the file. Config Options repo_owner - Github owner repo_name - Github repository name repo_path - Path within the Github repository >This workflow has been updated to use the n8n node and the code node so requires at least version 0.198.0 of n8n
jon-n8n
Jonathan
HTTP Request node
WhatsApp Business Cloud node
+10

Building Your First WhatsApp Chatbot

This n8n template builds a simple WhatsApp chabot acting as a Sales Agent. The Agent is backed by a product catalog vector store to better answer user's questions. This template is intended to help introduce n8n users interested in building with WhatsApp. How it works This template is in 2 parts: creating the product catalog vector store and building the WhatsApp AI chatbot. A product brochure is imported via HTTP request node and its text contents extracted. The text contents are then uploaded to the in-memory vector store to build a knowledgebase for the chatbot. A WhatsApp trigger is used to capture messages from customers where non-text messages are filtered out. The customer's message is sent to the AI Agent which queries the product catalogue using the vector store tool. The Agent's response is sent back to the user via the WhatsApp node. How to use Once you've setup and configured your WhatsApp account and credentials First, populate the vector store by clicking the "Test Workflow" button. Next, activate the workflow to enable the WhatsApp chatbot. Message your designated WhatsApp number and you should receive a message from the AI sales agent. Tweak datasource and behaviour as required. Requirements WhatsApp Business Account OpenAI for LLM Customising this workflow Upgrade the vector store to Qdrant for persistance and production use-cases. Handle different WhatsApp message types for a more rich and engaging experience for customers.
jimleuk
Jimleuk

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon