Code node
+7

Reconcile Rent Payments with Local Excel Spreadsheet and OpenAI

Published 4 months ago

Created by

jimleuk
Jimleuk

Categories

Template description

This n8n workflow is designed to work on the local network and assists with reconciling downloaded bank statements with internal tenant records to quickly highlight any issues with payments such as missed or late payments or those of incorrect amounts.

This assistant can then generate a report to quick flag attention to ensure remedial action is taken.

How it works

  • The workflow monitors a local network drive to watch for new bank statements that are added.
  • This bank statement is then imported into the n8n workflow, its contents extracted and sent to the AI Agent.
  • The AI Agent analyses the line items to identify the dates and any incoming payments from tenants.
  • The AI agent then uses an locally-hosted Excel ("XLSX") spreadsheet to get both tenant records and property records. From this data, it can determine for each active tenant when payment is due, the amount and the tenancy duration.
  • Comparing to the bank statement, the AI Agent can now report on where tenants have missed their payments, made late payments or are paying the incorrect amounts.
  • The final report is generated and logged in the same XLSX for a human to check and action.

Requirements

  • A self-hosted version of n8n is required.
  • OpenAI account for the AI model

Customising this workflow

If you organisation has a Slack or Teams account, consider sending reports to a channel for increased productivity. Email may be a good choice too.

Want to go fully local?

A version of this workflow is available which uses Ollama instead. You can download this template here: https://drive.google.com/file/d/1YRKjfakpInm23F_g8AHupKPBN-fphWgK/view?usp=sharing

Share Template

More Finance workflow templates

HTTP Request node
Google Drive node
Google Calendar node
+9

Actioning Your Meeting Next Steps using Transcripts and AI

This n8n workflow demonstrates how you can summarise and automate post-meeting actions from video transcripts fed into an AI Agent. Save time between meetings by allowing AI handle the chores of organising follow-up meetings and invites. How it works This workflow scans for the calendar for client or team meetings which were held online. * Attempts will be made to fetch any recorded transcripts which are then sent to the AI agent. The AI agent summarises and identifies if any follow-on meetings are required. If found, the Agent will use its Calendar Tool to to create the event for the time, date and place for the next meeting as well as add known attendees. Requirements Google Calendar and the ability to fetch Meeting Transcripts (There is a special OAuth permission for this action!) OpenAI account for access to the LLM. Customising the workflow This example only books follow-on meetings but could be extended to generate reports or send emails.
jimleuk
Jimleuk
Google Sheets node
HTTP Request node
Merge node
+10

Invoice data extraction with LlamaParse and OpenAI

This n8n workflow automates the process of parsing and extracting data from PDF invoices. With this workflow, accounts and finance people can realise huge time and cost savings in their busy schedules. Read the Blog: https://blog.n8n.io/how-to-extract-data-from-pdf-to-excel-spreadsheet-advance-parsing-with-n8n-io-and-llamaparse/ How it works This workflow will watch an email inbox for incoming invoices from suppliers It will download the attached PDFs and processing them through a third party service called LlamaParse. LlamaParse is specifically designed to handle and convert complex PDF data structures such as tables to markdown. Markdown is easily to process for LLM models and so the data extraction by our AI agent is more accurate and reliable. The workflow exports the extracted data from the AI agent to Google Sheets once the job complete. Requirements The criteria of the email trigger must be configured to capture emails with attachments. The gmail label "invoice synced" must be created before using this workflow. A LlamaIndex.ai account to use the LlamaParse service. An OpenAI account to use GPT for AI work. Google Sheets to save the output of the data extraction process although this can be replaced for whatever your needs. Customizing this workflow This workflow uses Gmail and Google Sheets but these can easily be swapped out for equivalent services such as Outlook and Excel. Not using Excel? Simple redirect the output of the AI agent to your accounting software of choice.
jimleuk
Jimleuk
Google Sheets node
Mindee node

Extract expenses from emails and add to Google Sheets

This workflow will check a mailbox for new emails and if the Subject contains Expenses or Reciept it will send the attachment to Mindee for processing then it will update a Google sheet with the values. To use this node you will need to set the Email Read node to use your mailboxes credentials and configure the Mindee and Google Sheets nodes to use your credentials.
jon-n8n
Jonathan

More AI workflow templates

OpenAI Chat Model node
SerpApi (Google Search) node

AI agent chat

This workflow employs OpenAI's language models and SerpAPI to create a responsive, intelligent conversational agent. It comes equipped with manual chat triggers and memory buffer capabilities to ensure seamless interactions. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Merge node
+7

Scrape and summarize webpages with AI

This workflow integrates both web scraping and NLP functionalities. It uses HTML parsing to extract links, HTTP requests to fetch essay content, and AI-based summarization using GPT-4o. It's an excellent example of an end-to-end automated task that is not only efficient but also provides real value by summarizing valuable content. Note that to use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Markdown node
+5

AI agent that can scrape webpages

⚙️🛠️🚀🤖🦾 This template is a PoC of a ReAct AI Agent capable of fetching random pages (not only Wikipedia or Google search results). On the top part there's a manual chat node connected to a LangChain ReAct Agent. The agent has access to a workflow tool for getting page content. The page content extraction starts with converting query parameters into a JSON object. There are 3 pre-defined parameters: url** – an address of the page to fetch method** = full / simplified maxlimit** - maximum length for the final page. For longer pages an error message is returned back to the agent Page content fetching is a multistep process: An HTTP Request mode tries to get the page content. If the page content was successfuly retrieved, a series of post-processing begin: Extract HTML BODY; content Remove all unnecessary tags to recude the page size Further eliminate external URLs and IMG scr values (based on the method query parameter) Remaining HTML is converted to Markdown, thus recuding the page lengh even more while preserving the basic page structure The remaining content is sent back to an Agent if it's not too long (maxlimit = 70000 by default, see CONFIG node). NB: You can isolate the HTTP Request part into a separate workflow. Check the Workflow Tool description, it guides the agent to provide a query string with several parameters instead of a JSON object. Please reach out to Eduard is you need further assistance with you n8n workflows and automations! Note that to use this template, you need to be on n8n version 1.19.4 or later.
eduard
Eduard

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon