Redis node
+8

Enhance Customer Chat by Buffering Messages with Twilio and Redis

Published 6 months ago

Created by

jimleuk
Jimleuk

Template description

This n8n workflow demonstrates a simple approach to improve chat UX by staggering an AI Agent's reply for users who send in a sequence of partial messages and in short bursts.

How it works

  • Twilio webhook receives user's messages which are recorded in a message stack powered by Redis.
  • The execution is immediately paused for 5 seconds and then another check is done against the message stack for the latest message.
  • The purpose of this check lets use know if the user is sending more messages or if they are waiting for a reply.
  • The execution is aborted if the latest message on the stack differs from the incoming message and continues if they are the same.
  • For the latter, the agent receives the buffered messages up to that point and is able to respond to them in a single reply.

Requirements

  • A Twilio account and SMS-enabled phone number to receive messages.
  • Redis instance for the messages stack.
  • OpenAI account for the language model.

Customising the workflow

This workflow should work for other common messaging platforms such as Whatsapp and Telegram.

5 seconds too long or too short? Adjust the wait threshold to suit your customers.

Share Template

More Support workflow templates

Google Sheets node
+5

🚀 Boost your customer service with this WhatsApp Business bot!

This n8n workflow demonstrates how to automate customer interactions and appointment management via WhatsApp Business bot. After submitting a Google Form, the user receives a notification via WhatsApp. These notifications are sent via a template message. In case user sends a message to the bot, the text and user data is stored in Google Sheets. To reply back to the user, fill in the ReplyText column and change the Status to 'Ready'. In a few seconds n8n will fetch the unsent replies and deliver them one by one via WhatsApp Business node. Customize this workflow to fit your specific needs, connect different online services and enhance your customer communication! 🎉 Setup Instructions To get this workflow up and running, you'll need to: 👇 Create a WhatsApp template message on the Meta Business portal. Obtain an Access Token and WhatsApp Business Account ID from the Meta Developers Portal. This is needed for the WhatsApp Business Node to send messages. Set up a WhatsApp Trigger node with App ID and App Secret from the Meta Developers Portal. Right after that copy the WhatsApp Trigger URL and add it as a Callback URL in the Meta Developers Portal. This trigger is needed to receive incoming messages and their status updates. Connect your Google Sheets account for data storage and management. Check out the documentation page. ⚠️ Important Notes WhatsApp allows automatic custom text messages only within 24 hours of the last user message. Outside with time frame only approved template messages can be sent. The workflow uses a Google Sheet to manage form submissions, incoming messages and prepare responses. You can replace these nodes and connect the WhatsApp bot with other systems.
eduard
Eduard
Slack node
Webhook node
OpenAI Chat Model node
+3

Slack chatbot powered by AI

This workflow offers an effective way to handle a chatbot's functionality, making use of multiple tools for information retrieval, conversation context storage, and message sending. It's a setup tailored for a Slack environment, aiming to offer an interactive, AI-driven chatbot experience. Note that to use this template, you need to be on n8n version 1.19.4 or later.
n8n-team
n8n Team
Notion node
Code node
+6

Notion AI Assistant Generator

This n8n workflow template lets teams easily generate a custom AI chat assistant based on the schema of any Notion database. Simply provide the Notion database URL, and the workflow downloads the schema and creates a tailored AI assistant designed to interact with that specific database structure. Set Up Watch this quick set up video 👇 Key Features Instant Assistant Generation**: Enter a Notion database URL, and the workflow produces an AI assistant configured to the database schema. Advanced Querying**: The assistant performs flexible queries, filtering records by multiple fields (e.g., tags, names). It can also search inside Notion pages to pull relevant content from specific blocks. Schema Awareness**: Understands and interacts with various Notion column types like text, dates, and tags for accurate responses. Reference Links**: Each query returns direct links to the exact Notion pages that inform the assistant’s response, promoting transparency and easy access. Self-Validation**: The workflow has logic to check the generated assistant, and if any errors are detected, it reruns the agent to fix them. Ideal for Product Managers**: Easily access and query product data across Notion databases. Support Teams**: Quickly search through knowledge bases for precise information to enhance support accuracy. Operations Teams**: Streamline access to HR, finance, or logistics data for fast, efficient retrieval. Data Teams**: Automate large dataset queries across multiple properties and records. How It Works This AI assistant leverages two HTTP request tools—one for querying the Notion database and another for retrieving data within individual pages. It’s powered by the Anthropic LLM (or can be swapped for GPT-4) and always provides reference links for added transparency.
max-n8n
Max Tkacz
HTTP Request node
Redis node
+8

Advanced Telegram Bot, Ticketing System, LiveChat, User Management, Broadcasting

A robust n8n workflow designed to enhance Telegram bot functionality for user management and broadcasting. It facilitates automatic support ticket creation, efficient user data storage in Redis, and a sophisticated system for message forwarding and broadcasting. How It Works Telegram Bot Setup: Initiate the workflow with a Telegram bot configured for handling different chat types (private, supergroup, channel). User Data Management: Formats and updates user data, storing it in a Redis database for efficient retrieval and management. Support Ticket Creation: Automatically generates chat tickets for user messages and saves the corresponding topic IDs in Redis. Message Forwarding: Forwards new messages to the appropriate chat thread, or creates a new thread if none exists. Support Forum Management: Handles messages within a support forum, differentiating between various chat types and user statuses. Broadcasting System: Implements a broadcasting mechanism that sends channel posts to all previous bot users, with a system to filter out blocked users. Blocked User Management: Identifies and manages blocked users, preventing them from receiving broadcasted messages. Versatile Channel Handling: Ensures that messages from verified channels are properly managed and broadcasted to relevant users. Set Up Steps Estimated Time**: Around 30 minutes. Requirements**: A Telegram bot, a Redis database, and Telegram group/channel IDs are necessary. Configuration**: Input the Telegram bot token and relevant group/channel IDs. Configure message handling and user data processing according to your needs. Detailed Instructions**: Sticky notes within the workflow provide extensive setup information and guidance. Live Demo Workflow Bot: Telegram Bot Link (Click here) Support Group: Telegram Group Link (Click here) Broadcasting Channel: Telegram Channel Link (Click here) Keywords: n8n workflow, Telegram bot, chat ticket system, Redis database, message broadcasting, user data management, support forum automation
nskha
Nskha
HTTP Request node
Merge node
Webhook node
+13

AI-powered WooCommerce Support-Agent

With this workflow you get a fully automated AI powered Support-Agent for your WooCommerce webshop. It allows customers to request information about things like: the status of their order the ordered products shipping and billing address current DHL shipping status How it works The workflow receives chat messages from an in a website integrated chat. For security and data-privacy reasons, does the website transmit the email address of the user encrypted with the requests. That ensures that user can just request the information about their own orders. An AI agent with a custom tool supplies the needed information. The tool calls a sub-workflow (in this case, in the same workflow for convenience) to retrieve the required information. This includes the full information of past orders plus the shipping information from DHL. If otherr shipping providers are used it should be simple to adjust the workflow to query information from other APIs like UPS, Fedex or others.
jan
Jan Oberhauser
Slack node
Jira Software node
+10

Automate Customer Support Issue Resolution using AI Text Classifier

This n8n template is designed to assist and improve customer support team member capacity by automating the resolution of long-lived and forgotten JIRA issues. How it works Schedule Trigger runs daily to check for long-lived unresolved issues and imports them into the workflow. Each Issue is handled as a separate subworkflow by using an execute workflow node. This allows parallel processing. A report is generated from the issue using its comment history allowing the issue to be classified by AI - determining the state and progress of the issue. If determined to be resolved, sentiment analysis is performed to track customer satisfaction. If negative, a slack message is sent to escalate, otherwise the issue is closed automatically. If no response has been initiated, an AI agent will attempt to search and resolve the issue itself using similar resolved issues or from the notion database. If a solution is found, it is posted to the issue and closed. If the issue is blocked and waiting for responses, then a reminder message is added. How to use This template searches for JIRA issues which are older than 7 days which are not in the "Done" status. Ensure there are some issues that meet this criteria otherwise adjust the search query to suit. Works best if you frequently have long-lived issues that need resolving. Ensure the notion tool is configured as to not read documents you didn't intend it to ie. private and/or internal documentation. Requirements JIRA for issues management OpenAI for LLM Slack for notifications Customising this workflow Why not try classifying issues as they are created? One use-case may be for quality control such as ensuring reporting criteria is adhered to, summarising and rephrasing issue for easier reading or adjusting priority.
jimleuk
Jimleuk

More Product workflow templates

Google Sheets node
+5

🚀 Boost your customer service with this WhatsApp Business bot!

This n8n workflow demonstrates how to automate customer interactions and appointment management via WhatsApp Business bot. After submitting a Google Form, the user receives a notification via WhatsApp. These notifications are sent via a template message. In case user sends a message to the bot, the text and user data is stored in Google Sheets. To reply back to the user, fill in the ReplyText column and change the Status to 'Ready'. In a few seconds n8n will fetch the unsent replies and deliver them one by one via WhatsApp Business node. Customize this workflow to fit your specific needs, connect different online services and enhance your customer communication! 🎉 Setup Instructions To get this workflow up and running, you'll need to: 👇 Create a WhatsApp template message on the Meta Business portal. Obtain an Access Token and WhatsApp Business Account ID from the Meta Developers Portal. This is needed for the WhatsApp Business Node to send messages. Set up a WhatsApp Trigger node with App ID and App Secret from the Meta Developers Portal. Right after that copy the WhatsApp Trigger URL and add it as a Callback URL in the Meta Developers Portal. This trigger is needed to receive incoming messages and their status updates. Connect your Google Sheets account for data storage and management. Check out the documentation page. ⚠️ Important Notes WhatsApp allows automatic custom text messages only within 24 hours of the last user message. Outside with time frame only approved template messages can be sent. The workflow uses a Google Sheet to manage form submissions, incoming messages and prepare responses. You can replace these nodes and connect the WhatsApp bot with other systems.
eduard
Eduard
Notion node
Code node
+6

Notion AI Assistant Generator

This n8n workflow template lets teams easily generate a custom AI chat assistant based on the schema of any Notion database. Simply provide the Notion database URL, and the workflow downloads the schema and creates a tailored AI assistant designed to interact with that specific database structure. Set Up Watch this quick set up video 👇 Key Features Instant Assistant Generation**: Enter a Notion database URL, and the workflow produces an AI assistant configured to the database schema. Advanced Querying**: The assistant performs flexible queries, filtering records by multiple fields (e.g., tags, names). It can also search inside Notion pages to pull relevant content from specific blocks. Schema Awareness**: Understands and interacts with various Notion column types like text, dates, and tags for accurate responses. Reference Links**: Each query returns direct links to the exact Notion pages that inform the assistant’s response, promoting transparency and easy access. Self-Validation**: The workflow has logic to check the generated assistant, and if any errors are detected, it reruns the agent to fix them. Ideal for Product Managers**: Easily access and query product data across Notion databases. Support Teams**: Quickly search through knowledge bases for precise information to enhance support accuracy. Operations Teams**: Streamline access to HR, finance, or logistics data for fast, efficient retrieval. Data Teams**: Automate large dataset queries across multiple properties and records. How It Works This AI assistant leverages two HTTP request tools—one for querying the Notion database and another for retrieving data within individual pages. It’s powered by the Anthropic LLM (or can be swapped for GPT-4) and always provides reference links for added transparency.
max-n8n
Max Tkacz
HTTP Request node
Google Drive node
Google Calendar node
+9

Actioning Your Meeting Next Steps using Transcripts and AI

This n8n workflow demonstrates how you can summarise and automate post-meeting actions from video transcripts fed into an AI Agent. Save time between meetings by allowing AI handle the chores of organising follow-up meetings and invites. How it works This workflow scans for the calendar for client or team meetings which were held online. * Attempts will be made to fetch any recorded transcripts which are then sent to the AI agent. The AI agent summarises and identifies if any follow-on meetings are required. If found, the Agent will use its Calendar Tool to to create the event for the time, date and place for the next meeting as well as add known attendees. Requirements Google Calendar and the ability to fetch Meeting Transcripts (There is a special OAuth permission for this action!) OpenAI account for access to the LLM. Customising the workflow This example only books follow-on meetings but could be extended to generate reports or send emails.
jimleuk
Jimleuk
HTTP Request node
Merge node
+13

AI Agent To Chat With Files In Supabase Storage

Video Guide I prepared a detailed guide explaining how to set up and implement this scenario, enabling you to chat with your documents stored in Supabase using n8n. Youtube Link Who is this for? This workflow is ideal for researchers, analysts, business owners, or anyone managing a large collection of documents. It's particularly beneficial for those who need quick contextual information retrieval from text-heavy files stored in Supabase, without needing additional services like Google Drive. What problem does this workflow solve? Manually retrieving and analyzing specific information from large document repositories is time-consuming and inefficient. This workflow automates the process by vectorizing documents and enabling AI-powered interactions, making it easy to query and retrieve context-based information from uploaded files. What this workflow does The workflow integrates Supabase with an AI-powered chatbot to process, store, and query text and PDF files. The steps include: Fetching and comparing files to avoid duplicate processing. Handling file downloads and extracting content based on the file type. Converting documents into vectorized data for contextual information retrieval. Storing and querying vectorized data from a Supabase vector store. File Extraction and Processing: Automates handling of multiple file formats (e.g., PDFs, text files), and extracts document content. Vectorized Embeddings Creation: Generates embeddings for processed data to enable AI-driven interactions. Dynamic Data Querying: Allows users to query their document repository conversationally using a chatbot. Setup N8N Workflow Fetch File List from Supabase: Use Supabase to retrieve the stored file list from a specified bucket. Add logic to manage empty folder placeholders returned by Supabase, avoiding incorrect processing. Compare and Filter Files: Aggregate the files retrieved from storage and compare them to the existing list in the Supabase files table. Exclude duplicates and skip placeholder files to ensure only unprocessed files are handled. Handle File Downloads: Download new files using detailed storage configurations for public/private access. Adjust the storage settings and GET requests to match your Supabase setup. File Type Processing: Use a Switch node to target specific file types (e.g., PDFs or text files). Employ relevant tools to process the content: For PDFs, extract embedded content. For text files, directly process the text data. Content Chunking: Break large text data into smaller chunks using the Text Splitter node. Define chunk size (default: 500 tokens) and overlap to retain necessary context across chunks. Vector Embedding Creation: Generate vectorized embeddings for the processed content using OpenAI's embedding tools. Ensure metadata, such as file ID, is included for easy data retrieval. Store Vectorized Data: Save the vectorized information into a dedicated Supabase vector store. Use the default schema and table provided by Supabase for seamless setup. AI Chatbot Integration: Add a chatbot node to handle user input and retrieve relevant document chunks. Use metadata like file ID for targeted queries, especially when multiple documents are involved. Testing Upload sample files to your Supabase bucket. Verify if files are processed and stored successfully in the vector store. Ask simple conversational questions about your documents using the chatbot (e.g., "What does Chapter 1 say about the Roman Empire?"). Test for accuracy and contextual relevance of retrieved results.
lowcodingdev
Mark Shcherbakov
+3

Generate SEO Seed Keywords Using AI

What this workflow does: This flow uses an AI node to generate Seed Keywords to focus SEO efforts on based on your ideal customer profile. You can use these keywords to form part of your SEO strategy. Outputs: List of 20 Seed Keywords Setup Fill the Set Ideal Customer Profile (ICP) Connect with your credentials Replace the Connect to your own database with your own database Pre-requisites / Dependencies You know your ideal customer profile (ICP) An AI API account (either OpenAI or Anthropic recommended) Made by Simon @ automake.io
simonscrapes
simonscrapes
Google Sheets node
HTTP Request node
Markdown node
+7

✨ Vision-Based AI Agent Scraper - with Google Sheets, ScrapingBee, and Gemini

Important Notes: Check Legal Regulations: This workflow involves scraping, so ensure you comply with the legal regulations in your country before getting started. Better safe than sorry! Workflow Description: 😮‍💨 Tired of struggling with XPath, CSS selectors, or DOM specificity when scraping ? This AI-powered solution is here to simplify your workflow! With a vision-based AI Agent, you can extract data effortlessly without worrying about how the DOM is structured. This workflow leverages a vision-based AI Agent, integrated with Google Sheets, ScrapingBee, and the Gemini-1.5-Pro model, to extract structured data from webpages. The AI Agent primarily uses screenshots for data extraction but switches to HTML scraping when necessary, ensuring high accuracy. Key Features: Google Sheets Integration**: Manage URLs to scrape and store structured results. ScrapingBee**: Capture full-page screenshots and retrieve HTML data for fallback extraction. AI-Powered Data Parsing**: Use Gemini-1.5-Pro for vision-based scraping and a Structured Output Parser to format extracted data into JSON. Token Efficiency**: HTML is converted to Markdown to optimize processing costs. This template is designed for e-commerce scraping but can be customized for various use cases.
dataki
Dataki

More AI workflow templates

OpenAI Chat Model node
SerpApi (Google Search) node

AI agent chat

This workflow employs OpenAI's language models and SerpAPI to create a responsive, intelligent conversational agent. It comes equipped with manual chat triggers and memory buffer capabilities to ensure seamless interactions. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Merge node
+7

Scrape and summarize webpages with AI

This workflow integrates both web scraping and NLP functionalities. It uses HTML parsing to extract links, HTTP requests to fetch essay content, and AI-based summarization using GPT-4o. It's an excellent example of an end-to-end automated task that is not only efficient but also provides real value by summarizing valuable content. Note that to use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Markdown node
+5

AI agent that can scrape webpages

⚙️🛠️🚀🤖🦾 This template is a PoC of a ReAct AI Agent capable of fetching random pages (not only Wikipedia or Google search results). On the top part there's a manual chat node connected to a LangChain ReAct Agent. The agent has access to a workflow tool for getting page content. The page content extraction starts with converting query parameters into a JSON object. There are 3 pre-defined parameters: url** – an address of the page to fetch method** = full / simplified maxlimit** - maximum length for the final page. For longer pages an error message is returned back to the agent Page content fetching is a multistep process: An HTTP Request mode tries to get the page content. If the page content was successfuly retrieved, a series of post-processing begin: Extract HTML BODY; content Remove all unnecessary tags to recude the page size Further eliminate external URLs and IMG scr values (based on the method query parameter) Remaining HTML is converted to Markdown, thus recuding the page lengh even more while preserving the basic page structure The remaining content is sent back to an Agent if it's not too long (maxlimit = 70000 by default, see CONFIG node). NB: You can isolate the HTTP Request part into a separate workflow. Check the Workflow Tool description, it guides the agent to provide a query string with several parameters instead of a JSON object. Please reach out to Eduard is you need further assistance with you n8n workflows and automations! Note that to use this template, you need to be on n8n version 1.19.4 or later.
eduard
Eduard
Merge node
Telegram node
Telegram Trigger node
+2

Telegram AI Chatbot

The workflow starts by listening for messages from Telegram users. The message is then processed, and based on its content, different actions are taken. If it's a regular chat message, the workflow generates a response using the OpenAI API and sends it back to the user. If it's a command to create an image, the workflow generates an image using the OpenAI API and sends the image to the user. If the command is unsupported, an error message is sent. Throughout the workflow, there are additional nodes for displaying notes and simulating typing actions.
eduard
Eduard
Google Sheets node
HTTP Request node
Merge node
+4

OpenAI GPT-3: Company Enrichment from website content

Enrich your company lists with OpenAI GPT-3 ↓ You’ll get valuable information such as: Market (B2B or B2C) Industry Target Audience Value Proposition This will help you to: add more personalization to your outreach make informed decisions about which accounts to target I've made the process easy with an n8n workflow. Here is what it does: Retrieve website URLs from Google Sheets Extract the content for each website Analyze it with GPT-3 Update Google Sheets with GPT-3 data
lempire
Lucas Perret
Google Drive node
Binary Input Loader node
Embeddings OpenAI node
OpenAI Chat Model node
+5

Ask questions about a PDF using AI

The workflow first populates a Pinecone index with vectors from a Bitcoin whitepaper. Then, it waits for a manual chat message. When received, the chat message is turned into a vector and compared to the vectors in Pinecone. The most similar vectors are retrieved and passed to OpenAI for generating a chat response. Note that to use this template, you need to be on n8n version 1.19.4 or later.
davidn8n
David Roberts

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon