Google Sheets node
HTTP Request node
+12

Customer Insights with Qdrant, Python and Information Extractor

Published 3 months ago

Created by

jimleuk
Jimleuk

Categories

Template description

This n8n template is one of a 3-part series exploring use-cases for clustering vector embeddings:

  • Survey Insights
  • Customer Insights
  • Community Insights

This template demonstrates the Customer Insights scenario where Trustpilot reviews can be quickly grouped by similarity and an AI agent can generate insights on those groupings.

With this workflow, marketers can save days and even weeks of work breaking down their own or competitor reviews and identify frequently mentioned positives and negatives.

Sample Output: https://docs.google.com/spreadsheets/d/e/2PACX-1vQ6ipJnXWXgr5wlUJnhioNpeYrxaIpsRYZCwN3C-fFXumkbh9TAsA_JzE0kbv7DcGAVIP7az0L46_2P/pubhtml

How it works

  • Trustpilot reviews are scraped for a particular company using the HTTP request node.
  • Reviews are then inserted into a Qdrant collection carefully tagged with the question and Trustpilot metadata.
  • Reviews are fetched and put through a clustering algorithm using the Python Code node. The Qdrant points are returned in clustered groups.
  • Each group is looped to fetch the payloads of the points and feed them to the AI agent to summarise and generate insights for.
  • The resulting insights and raw responses are then saved to the Google Spreadsheet for further analysis by the marketer.

Requirements

  • Qdrant Vectorstore for storing embeddings.
  • OpenAI account for embeddings and LLM.

Customising the Template

  • Adjust clustering parameters which make sense for your data.
  • Consider expanding date range of reviews for insights over common intervals: 3mth, 6mth and YTD.

Share Template

More Sales workflow templates

Google Sheets node
HTTP Request node
Merge node
+4

OpenAI GPT-3: Company Enrichment from website content

Enrich your company lists with OpenAI GPT-3 ↓ You’ll get valuable information such as: Market (B2B or B2C) Industry Target Audience Value Proposition This will help you to: add more personalization to your outreach make informed decisions about which accounts to target I've made the process easy with an n8n workflow. Here is what it does: Retrieve website URLs from Google Sheets Extract the content for each website Analyze it with GPT-3 Update Google Sheets with GPT-3 data
lempire
Lucas Perret
Google Sheets node
HTTP Request node
Microsoft Excel 365 node
Gmail node
+5

Automated Web Scraping: email a CSV, save to Google Sheets & Microsoft Excel

How it works: The workflow starts by sending a request to a website to retrieve its HTML content. It then parses the HTML extracting the relevant information The extracted data is storted and converted into a CSV file. The CSV file is attached to an email and sent to your specified address. The data is simultaneously saved to both Google Sheets and Microsoft Excel for further analysis or use. Set-up steps: Change the website to scrape in the "Fetch website content" node Configure Microsoft Azure credentials with Microsoft Graph permissions (required for the Save to Microsoft Excel 365 node) Configure Google Cloud credentials with access to Google Drive, Google Sheets and Gmail APIs (the latter is required for the Send CSV via e-mail node).
mihailtd
Mihai Farcas
Google Sheets node
Merge node
+7

AI web researcher for sales

Who is this for? This workflow is for all sales reps and lead generation manager who need to prepare their prospecting activities, and find relevant information to personalize their outreach. Use Case This workflow allows you to do account research with the web using AI. It has the potential to replace manual work done by sales rep when preparing their prospecting activities by searching complex information available online. What this workflow does The advanced AI module has 2 capabilities: Research Google using SerpAPI Visit and get website content using a sub-workflow From an unstructured input like a domain or a company name. It will return the following properties: domain company Linkedin Url cheapest plan has free trial has entreprise plan has API market (B2B or B2C) The strength of n8n here is that you can adapt this workflow to research whatever information you need. You just have to precise it in the prompt and to precise the output format in the "Strutured Output Parser" module. Detailed instructions + video guide can be found by following this link.
lucasperret
Lucas Perret

More AI workflow templates

OpenAI Chat Model node
SerpApi (Google Search) node

AI agent chat

This workflow employs OpenAI's language models and SerpAPI to create a responsive, intelligent conversational agent. It comes equipped with manual chat triggers and memory buffer capabilities to ensure seamless interactions. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Merge node
+7

Scrape and summarize webpages with AI

This workflow integrates both web scraping and NLP functionalities. It uses HTML parsing to extract links, HTTP requests to fetch essay content, and AI-based summarization using GPT-4o. It's an excellent example of an end-to-end automated task that is not only efficient but also provides real value by summarizing valuable content. Note that to use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Markdown node
+5

AI agent that can scrape webpages

⚙️🛠️🚀🤖🦾 This template is a PoC of a ReAct AI Agent capable of fetching random pages (not only Wikipedia or Google search results). On the top part there's a manual chat node connected to a LangChain ReAct Agent. The agent has access to a workflow tool for getting page content. The page content extraction starts with converting query parameters into a JSON object. There are 3 pre-defined parameters: url** – an address of the page to fetch method** = full / simplified maxlimit** - maximum length for the final page. For longer pages an error message is returned back to the agent Page content fetching is a multistep process: An HTTP Request mode tries to get the page content. If the page content was successfuly retrieved, a series of post-processing begin: Extract HTML BODY; content Remove all unnecessary tags to recude the page size Further eliminate external URLs and IMG scr values (based on the method query parameter) Remaining HTML is converted to Markdown, thus recuding the page lengh even more while preserving the basic page structure The remaining content is sent back to an Agent if it's not too long (maxlimit = 70000 by default, see CONFIG node). NB: You can isolate the HTTP Request part into a separate workflow. Check the Workflow Tool description, it guides the agent to provide a query string with several parameters instead of a JSON object. Please reach out to Eduard is you need further assistance with you n8n workflows and automations! Note that to use this template, you need to be on n8n version 1.19.4 or later.
eduard
Eduard

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon