HTTP Request node
WhatsApp Business Cloud node
+11

Building Your First WhatsApp Chatbot

Published 29 days ago

Created by

jimleuk
Jimleuk

Template description

This n8n template builds a simple WhatsApp chabot acting as a Sales Agent. The Agent is backed by a product catalog vector store to better answer user's questions.

This template is intended to help introduce n8n users interested in building with WhatsApp.

How it works

  • This template is in 2 parts: creating the product catalog vector store and building the WhatsApp AI chatbot.
  • A product brochure is imported via HTTP request node and its text contents extracted.
  • The text contents are then uploaded to the in-memory vector store to build a knowledgebase for the chatbot.
  • A WhatsApp trigger is used to capture messages from customers where non-text messages are filtered out.
  • The customer's message is sent to the AI Agent which queries the product catalogue using the vector store tool.
  • The Agent's response is sent back to the user via the WhatsApp node.

How to use

Once you've setup and configured your WhatsApp account and credentials

  • First, populate the vector store by clicking the "Test Workflow" button.
  • Next, activate the workflow to enable the WhatsApp chatbot.
  • Message your designated WhatsApp number and you should receive a message from the AI sales agent.
  • Tweak datasource and behaviour as required.

Requirements

  • WhatsApp Business Account
  • OpenAI for LLM

Customising this workflow

  • Upgrade the vector store to Qdrant for persistance and production use-cases.
  • Handle different WhatsApp message types for a more rich and engaging experience for customers.

Share Template

More Sales workflow templates

Google Sheets node
HTTP Request node
Merge node
+4

OpenAI GPT-3: Company Enrichment from website content

Enrich your company lists with OpenAI GPT-3 ↓ You’ll get valuable information such as: Market (B2B or B2C) Industry Target Audience Value Proposition This will help you to: add more personalization to your outreach make informed decisions about which accounts to target I've made the process easy with an n8n workflow. Here is what it does: Retrieve website URLs from Google Sheets Extract the content for each website Analyze it with GPT-3 Update Google Sheets with GPT-3 data
lempire
Lucas Perret
Google Sheets node
HTTP Request node
Microsoft Excel 365 node
Gmail node
+5

Automated Web Scraping: email a CSV, save to Google Sheets & Microsoft Excel

How it works: The workflow starts by sending a request to a website to retrieve its HTML content. It then parses the HTML extracting the relevant information The extracted data is storted and converted into a CSV file. The CSV file is attached to an email and sent to your specified address. The data is simultaneously saved to both Google Sheets and Microsoft Excel for further analysis or use. Set-up steps: Change the website to scrape in the "Fetch website content" node Configure Microsoft Azure credentials with Microsoft Graph permissions (required for the Save to Microsoft Excel 365 node) Configure Google Cloud credentials with access to Google Drive, Google Sheets and Gmail APIs (the latter is required for the Send CSV via e-mail node).
mihailtd
Mihai Farcas
Google Sheets node
Merge node
+7

AI web researcher for sales

Who is this for? This workflow is for all sales reps and lead generation manager who need to prepare their prospecting activities, and find relevant information to personalize their outreach. Use Case This workflow allows you to do account research with the web using AI. It has the potential to replace manual work done by sales rep when preparing their prospecting activities by searching complex information available online. What this workflow does The advanced AI module has 2 capabilities: Research Google using SerpAPI Visit and get website content using a sub-workflow From an unstructured input like a domain or a company name. It will return the following properties: domain company Linkedin Url cheapest plan has free trial has entreprise plan has API market (B2B or B2C) The strength of n8n here is that you can adapt this workflow to research whatever information you need. You just have to precise it in the prompt and to precise the output format in the "Strutured Output Parser" module. Detailed instructions + video guide can be found by following this link.
lucasperret
Lucas Perret

More Building Blocks workflow templates

Webhook node
Respond to Webhook node

Creating an API endpoint

Task: Create a simple API endpoint using the Webhook and Respond to Webhook nodes Why: You can prototype or replace a backend process with a single workflow Main use cases: Replace backend logic with a workflow
jon-n8n
Jonathan
Customer Datastore (n8n training) node

Very quick quickstart

Want to learn the basics of n8n? Our comprehensive quick quickstart tutorial is here to guide you through the basics of n8n, step by step. Designed with beginners in mind, this tutorial provides a hands-on approach to learning n8n's basic functionalities.
deborah
Deborah
HTTP Request node
Item Lists node

Pulling data from services that n8n doesn’t have a pre-built integration for

You still can use the app in a workflow even if we don’t have a node for that or the existing operation for that. With the HTTP Request node, it is possible to call any API point and use the incoming data in your workflow Main use cases: Connect with apps and services that n8n doesn’t have integration with Web scraping How it works This workflow can be divided into three branches, each serving a distinct purpose: 1.Splitting into Items (HTTP Request - Get Mock Albums): The workflow initiates with a manual trigger (On clicking 'execute'). It performs an HTTP request to retrieve mock albums data from "https://jsonplaceholder.typicode.com/albums." The obtained data is split into items using the Item Lists node, facilitating easier management. 2.Data Scraping (HTTP Request - Get Wikipedia Page and HTML Extract): Another branch of the workflow involves fetching a random Wikipedia page using an HTTP request to "https://en.wikipedia.org/wiki/Special:Random." The HTML Extract node extracts the article title from the fetched Wikipedia page. 3.Handling Pagination (The final branch deals with handling pagination for a GitHub API request): It sends an HTTP request to "https://api.github.com/users/that-one-tom/starred," with parameters like the page number and items per page dynamically set by the Set node. The workflow uses conditions (If - Are we finished?) to check if there are more pages to retrieve and increments the page number accordingly (Set - Increment Page). This process repeats until all pages are fetched, allowing for comprehensive data retrieval.
jon-n8n
Jonathan

More AI workflow templates

OpenAI Chat Model node
SerpApi (Google Search) node

AI agent chat

This workflow employs OpenAI's language models and SerpAPI to create a responsive, intelligent conversational agent. It comes equipped with manual chat triggers and memory buffer capabilities to ensure seamless interactions. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Merge node
+7

Scrape and summarize webpages with AI

This workflow integrates both web scraping and NLP functionalities. It uses HTML parsing to extract links, HTTP requests to fetch essay content, and AI-based summarization using GPT-4o. It's an excellent example of an end-to-end automated task that is not only efficient but also provides real value by summarizing valuable content. Note that to use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Markdown node
+5

AI agent that can scrape webpages

⚙️🛠️🚀🤖🦾 This template is a PoC of a ReAct AI Agent capable of fetching random pages (not only Wikipedia or Google search results). On the top part there's a manual chat node connected to a LangChain ReAct Agent. The agent has access to a workflow tool for getting page content. The page content extraction starts with converting query parameters into a JSON object. There are 3 pre-defined parameters: url** – an address of the page to fetch method** = full / simplified maxlimit** - maximum length for the final page. For longer pages an error message is returned back to the agent Page content fetching is a multistep process: An HTTP Request mode tries to get the page content. If the page content was successfuly retrieved, a series of post-processing begin: Extract HTML BODY; content Remove all unnecessary tags to recude the page size Further eliminate external URLs and IMG scr values (based on the method query parameter) Remaining HTML is converted to Markdown, thus recuding the page lengh even more while preserving the basic page structure The remaining content is sent back to an Agent if it's not too long (maxlimit = 70000 by default, see CONFIG node). NB: You can isolate the HTTP Request part into a separate workflow. Check the Workflow Tool description, it guides the agent to provide a query string with several parameters instead of a JSON object. Please reach out to Eduard is you need further assistance with you n8n workflows and automations! Note that to use this template, you need to be on n8n version 1.19.4 or later.
eduard
Eduard

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon