Airtable node
n8n Form Trigger node

Store Form Submission in Airtable

Published 5 days ago

Created by

weblineindia
WeblineIndia

Template description

This workflow, developed by our AI developers at WeblineIndia, is designed to automate the process of capturing form submissions and storing them in Airtable. By leveraging automation, it eliminates manual data entry, ensuring a smooth and efficient way to handle form data. The purpose of creating this workflow is to streamline data management, helping businesses save time, reduce errors, and maintain an organized, structured database for easy access and future use.

Steps:

  • Trigger on Form Submission (Form Node)

    • What It Does: Activates the workflow whenever a form is submitted.
    • How to Set It Up: Use the Form Submission Trigger node to detect new form submissions. This ensures the workflow starts automatically when a user fills out the form.
  • Store Data in Airtable (Airtable Node)

    • What It Does: Transfers the form data into an Airtable base.
    • How to Set It Up: Use the Airtable Node to map form fields to corresponding columns in your Airtable table, storing the data accurately.
  • Finalize and Activate

    • What It Does: Completes the setup to automate data storage upon form submission.
    • How to Set It Up: Save and activate the workflow. Once active, it will automatically record all new form submissions in Airtable.

Share Template

More Product workflow templates

Google Sheets node
+5

🚀 Boost your customer service with this WhatsApp Business bot!

This n8n workflow demonstrates how to automate customer interactions and appointment management via WhatsApp Business bot. After submitting a Google Form, the user receives a notification via WhatsApp. These notifications are sent via a template message. In case user sends a message to the bot, the text and user data is stored in Google Sheets. To reply back to the user, fill in the ReplyText column and change the Status to 'Ready'. In a few seconds n8n will fetch the unsent replies and deliver them one by one via WhatsApp Business node. Customize this workflow to fit your specific needs, connect different online services and enhance your customer communication! 🎉 Setup Instructions To get this workflow up and running, you'll need to: 👇 Create a WhatsApp template message on the Meta Business portal. Obtain an Access Token and WhatsApp Business Account ID from the Meta Developers Portal. This is needed for the WhatsApp Business Node to send messages. Set up a WhatsApp Trigger node with App ID and App Secret from the Meta Developers Portal. Right after that copy the WhatsApp Trigger URL and add it as a Callback URL in the Meta Developers Portal. This trigger is needed to receive incoming messages and their status updates. Connect your Google Sheets account for data storage and management. Check out the documentation page. ⚠️ Important Notes WhatsApp allows automatic custom text messages only within 24 hours of the last user message. Outside with time frame only approved template messages can be sent. The workflow uses a Google Sheet to manage form submissions, incoming messages and prepare responses. You can replace these nodes and connect the WhatsApp bot with other systems.
eduard
Eduard
Notion node
Code node
+6

Notion AI Assistant Generator

This n8n workflow template lets teams easily generate a custom AI chat assistant based on the schema of any Notion database. Simply provide the Notion database URL, and the workflow downloads the schema and creates a tailored AI assistant designed to interact with that specific database structure. Set Up Watch this quick set up video 👇 Key Features Instant Assistant Generation**: Enter a Notion database URL, and the workflow produces an AI assistant configured to the database schema. Advanced Querying**: The assistant performs flexible queries, filtering records by multiple fields (e.g., tags, names). It can also search inside Notion pages to pull relevant content from specific blocks. Schema Awareness**: Understands and interacts with various Notion column types like text, dates, and tags for accurate responses. Reference Links**: Each query returns direct links to the exact Notion pages that inform the assistant’s response, promoting transparency and easy access. Self-Validation**: The workflow has logic to check the generated assistant, and if any errors are detected, it reruns the agent to fix them. Ideal for Product Managers**: Easily access and query product data across Notion databases. Support Teams**: Quickly search through knowledge bases for precise information to enhance support accuracy. Operations Teams**: Streamline access to HR, finance, or logistics data for fast, efficient retrieval. Data Teams**: Automate large dataset queries across multiple properties and records. How It Works This AI assistant leverages two HTTP request tools—one for querying the Notion database and another for retrieving data within individual pages. It’s powered by the Anthropic LLM (or can be swapped for GPT-4) and always provides reference links for added transparency.
max-n8n
Max Tkacz
HTTP Request node
Google Drive node
Google Calendar node
+9

Actioning Your Meeting Next Steps using Transcripts and AI

This n8n workflow demonstrates how you can summarise and automate post-meeting actions from video transcripts fed into an AI Agent. Save time between meetings by allowing AI handle the chores of organising follow-up meetings and invites. How it works This workflow scans for the calendar for client or team meetings which were held online. * Attempts will be made to fetch any recorded transcripts which are then sent to the AI agent. The AI agent summarises and identifies if any follow-on meetings are required. If found, the Agent will use its Calendar Tool to to create the event for the time, date and place for the next meeting as well as add known attendees. Requirements Google Calendar and the ability to fetch Meeting Transcripts (There is a special OAuth permission for this action!) OpenAI account for access to the LLM. Customising the workflow This example only books follow-on meetings but could be extended to generate reports or send emails.
jimleuk
Jimleuk
HTTP Request node
Merge node
+13

AI Agent To Chat With Files In Supabase Storage

Video Guide I prepared a detailed guide explaining how to set up and implement this scenario, enabling you to chat with your documents stored in Supabase using n8n. Youtube Link Who is this for? This workflow is ideal for researchers, analysts, business owners, or anyone managing a large collection of documents. It's particularly beneficial for those who need quick contextual information retrieval from text-heavy files stored in Supabase, without needing additional services like Google Drive. What problem does this workflow solve? Manually retrieving and analyzing specific information from large document repositories is time-consuming and inefficient. This workflow automates the process by vectorizing documents and enabling AI-powered interactions, making it easy to query and retrieve context-based information from uploaded files. What this workflow does The workflow integrates Supabase with an AI-powered chatbot to process, store, and query text and PDF files. The steps include: Fetching and comparing files to avoid duplicate processing. Handling file downloads and extracting content based on the file type. Converting documents into vectorized data for contextual information retrieval. Storing and querying vectorized data from a Supabase vector store. File Extraction and Processing: Automates handling of multiple file formats (e.g., PDFs, text files), and extracts document content. Vectorized Embeddings Creation: Generates embeddings for processed data to enable AI-driven interactions. Dynamic Data Querying: Allows users to query their document repository conversationally using a chatbot. Setup N8N Workflow Fetch File List from Supabase: Use Supabase to retrieve the stored file list from a specified bucket. Add logic to manage empty folder placeholders returned by Supabase, avoiding incorrect processing. Compare and Filter Files: Aggregate the files retrieved from storage and compare them to the existing list in the Supabase files table. Exclude duplicates and skip placeholder files to ensure only unprocessed files are handled. Handle File Downloads: Download new files using detailed storage configurations for public/private access. Adjust the storage settings and GET requests to match your Supabase setup. File Type Processing: Use a Switch node to target specific file types (e.g., PDFs or text files). Employ relevant tools to process the content: For PDFs, extract embedded content. For text files, directly process the text data. Content Chunking: Break large text data into smaller chunks using the Text Splitter node. Define chunk size (default: 500 tokens) and overlap to retain necessary context across chunks. Vector Embedding Creation: Generate vectorized embeddings for the processed content using OpenAI's embedding tools. Ensure metadata, such as file ID, is included for easy data retrieval. Store Vectorized Data: Save the vectorized information into a dedicated Supabase vector store. Use the default schema and table provided by Supabase for seamless setup. AI Chatbot Integration: Add a chatbot node to handle user input and retrieve relevant document chunks. Use metadata like file ID for targeted queries, especially when multiple documents are involved. Testing Upload sample files to your Supabase bucket. Verify if files are processed and stored successfully in the vector store. Ask simple conversational questions about your documents using the chatbot (e.g., "What does Chapter 1 say about the Roman Empire?"). Test for accuracy and contextual relevance of retrieved results.
lowcodingdev
Mark Shcherbakov
+3

Generate SEO Seed Keywords Using AI

What this workflow does: This flow uses an AI node to generate Seed Keywords to focus SEO efforts on based on your ideal customer profile. You can use these keywords to form part of your SEO strategy. Outputs: List of 20 Seed Keywords Setup Fill the Set Ideal Customer Profile (ICP) Connect with your credentials Replace the Connect to your own database with your own database Pre-requisites / Dependencies You know your ideal customer profile (ICP) An AI API account (either OpenAI or Anthropic recommended) Made by Simon @ automake.io
simonscrapes
simonscrapes
Google Sheets node
HTTP Request node
Markdown node
+7

✨ Vision-Based AI Agent Scraper - with Google Sheets, ScrapingBee, and Gemini

Important Notes: Check Legal Regulations: This workflow involves scraping, so ensure you comply with the legal regulations in your country before getting started. Better safe than sorry! Workflow Description: 😮‍💨 Tired of struggling with XPath, CSS selectors, or DOM specificity when scraping ? This AI-powered solution is here to simplify your workflow! With a vision-based AI Agent, you can extract data effortlessly without worrying about how the DOM is structured. This workflow leverages a vision-based AI Agent, integrated with Google Sheets, ScrapingBee, and the Gemini-1.5-Pro model, to extract structured data from webpages. The AI Agent primarily uses screenshots for data extraction but switches to HTML scraping when necessary, ensuring high accuracy. Key Features: Google Sheets Integration**: Manage URLs to scrape and store structured results. ScrapingBee**: Capture full-page screenshots and retrieve HTML data for fallback extraction. AI-Powered Data Parsing**: Use Gemini-1.5-Pro for vision-based scraping and a Structured Output Parser to format extracted data into JSON. Token Efficiency**: HTML is converted to Markdown to optimize processing costs. This template is designed for e-commerce scraping but can be customized for various use cases.
dataki
Dataki

More Building Blocks workflow templates

Webhook node
Respond to Webhook node

Creating an API endpoint

Task: Create a simple API endpoint using the Webhook and Respond to Webhook nodes Why: You can prototype or replace a backend process with a single workflow Main use cases: Replace backend logic with a workflow
jon-n8n
Jonathan
Customer Datastore (n8n training) node

Very quick quickstart

Want to learn the basics of n8n? Our comprehensive quick quickstart tutorial is here to guide you through the basics of n8n, step by step. Designed with beginners in mind, this tutorial provides a hands-on approach to learning n8n's basic functionalities.
deborah
Deborah
HTTP Request node
Item Lists node

Pulling data from services that n8n doesn’t have a pre-built integration for

You still can use the app in a workflow even if we don’t have a node for that or the existing operation for that. With the HTTP Request node, it is possible to call any API point and use the incoming data in your workflow Main use cases: Connect with apps and services that n8n doesn’t have integration with Web scraping How it works This workflow can be divided into three branches, each serving a distinct purpose: 1.Splitting into Items (HTTP Request - Get Mock Albums): The workflow initiates with a manual trigger (On clicking 'execute'). It performs an HTTP request to retrieve mock albums data from "https://jsonplaceholder.typicode.com/albums." The obtained data is split into items using the Item Lists node, facilitating easier management. 2.Data Scraping (HTTP Request - Get Wikipedia Page and HTML Extract): Another branch of the workflow involves fetching a random Wikipedia page using an HTTP request to "https://en.wikipedia.org/wiki/Special:Random." The HTML Extract node extracts the article title from the fetched Wikipedia page. 3.Handling Pagination (The final branch deals with handling pagination for a GitHub API request): It sends an HTTP request to "https://api.github.com/users/that-one-tom/starred," with parameters like the page number and items per page dynamically set by the Set node. The workflow uses conditions (If - Are we finished?) to check if there are more pages to retrieve and increments the page number accordingly (Set - Increment Page). This process repeats until all pages are fetched, allowing for comprehensive data retrieval.
jon-n8n
Jonathan
Merge node

Joining different datasets

Task: Merge two datasets into one based on matching rules Why: A powerful capability of n8n is to easily branch out the workflow in order to process different datasets. Even more powerful is the ability to join them back together with SQL-like joining logic. Main use cases: Appending data sets Keep only new items Keep only existing items
jon-n8n
Jonathan
GitHub node
HTTP Request node
Merge node
+11

Back Up Your n8n Workflows To Github

This workflow will backup your workflows to Github. It uses the public api to export all of the workflow data using the n8n node. It then loops over the data checks in Github to see if a file exists that uses the workflow name. Once checked it will then update the file on Github if it exists, Create a new file if it doesn't exist and if it's the same it will ignore the file. Config Options repo_owner - Github owner repo_name - Github repository name repo_path - Path within the Github repository >This workflow has been updated to use the n8n node and the code node so requires at least version 0.198.0 of n8n
jon-n8n
Jonathan
HTTP Request node
WhatsApp Business Cloud node
+10

Building Your First WhatsApp Chatbot

This n8n template builds a simple WhatsApp chabot acting as a Sales Agent. The Agent is backed by a product catalog vector store to better answer user's questions. This template is intended to help introduce n8n users interested in building with WhatsApp. How it works This template is in 2 parts: creating the product catalog vector store and building the WhatsApp AI chatbot. A product brochure is imported via HTTP request node and its text contents extracted. The text contents are then uploaded to the in-memory vector store to build a knowledgebase for the chatbot. A WhatsApp trigger is used to capture messages from customers where non-text messages are filtered out. The customer's message is sent to the AI Agent which queries the product catalogue using the vector store tool. The Agent's response is sent back to the user via the WhatsApp node. How to use Once you've setup and configured your WhatsApp account and credentials First, populate the vector store by clicking the "Test Workflow" button. Next, activate the workflow to enable the WhatsApp chatbot. Message your designated WhatsApp number and you should receive a message from the AI sales agent. Tweak datasource and behaviour as required. Requirements WhatsApp Business Account OpenAI for LLM Customising this workflow Upgrade the vector store to Qdrant for persistance and production use-cases. Handle different WhatsApp message types for a more rich and engaging experience for customers.
jimleuk
Jimleuk

More Marketing workflow templates

Google Sheets node
HTTP Request node
Merge node
+4

OpenAI GPT-3: Company Enrichment from website content

Enrich your company lists with OpenAI GPT-3 ↓ You’ll get valuable information such as: Market (B2B or B2C) Industry Target Audience Value Proposition This will help you to: add more personalization to your outreach make informed decisions about which accounts to target I've made the process easy with an n8n workflow. Here is what it does: Retrieve website URLs from Google Sheets Extract the content for each website Analyze it with GPT-3 Update Google Sheets with GPT-3 data
lempire
Lucas Perret
Google Sheets node
HTTP Request node
Microsoft Excel 365 node
Gmail node
+5

Automated Web Scraping: email a CSV, save to Google Sheets & Microsoft Excel

How it works: The workflow starts by sending a request to a website to retrieve its HTML content. It then parses the HTML extracting the relevant information The extracted data is storted and converted into a CSV file. The CSV file is attached to an email and sent to your specified address. The data is simultaneously saved to both Google Sheets and Microsoft Excel for further analysis or use. Set-up steps: Change the website to scrape in the "Fetch website content" node Configure Microsoft Azure credentials with Microsoft Graph permissions (required for the Save to Microsoft Excel 365 node) Configure Google Cloud credentials with access to Google Drive, Google Sheets and Gmail APIs (the latter is required for the Send CSV via e-mail node).
mihailtd
Mihai Farcas
HTTP Request node
S3 node
Respond to Webhook node
+2

Flux AI Image Generator

Easily generate images with Black Forest's Flux Text-to-Image AI models using Hugging Face’s Inference API. This template serves a webform where you can enter prompts and select predefined visual styles that are customizable with no-code. The workflow integrates seamlessly with Hugging Face's free tier, and it’s easy to modify for any Text-to-Image model that supports API access. Try it Curious what this template does? Try a public version here: https://devrel.app.n8n.cloud/form/flux Set Up Watch this quick set up video 👇 Accounts required Huggingface.co account (free) Cloudflare.com account (free - used for storage; but can be swapped easily e.g. GDrive) Key Features: Text-to-Image Creation**: Generates unique visuals based on your prompt and style. Hugging Face Integration**: Utilizes Hugging Face’s Inference API for reliable image generation. Customizable Visual Styles**: Select from preset styles or easily add your own. Adaptable**: Swap in any Hugging Face Text-to-Image model that supports API calls. Ideal for: Creators**: Rapidly create visuals for projects. Marketers**: Prototype campaign visuals. Developers**: Test different AI image models effortlessly. How It Works: You submit an image prompt via the webform and select a visual style, which appends style instructions to your prompt. The Hugging Face Inference API then generates and returns the image, which gets hosted on Cloudflare S3. The workflow can be easily adjusted to use other models and styles for complete flexibility.
max-n8n
Max Tkacz
Gmail node
Gmail Trigger node
+2

Gmail AI Auto-Responder: Create Draft Replies to incoming emails

This workflow automatically generates draft replies in Gmail. It's designed for anyone who manages a high volume of emails or often face writer's block when crafting responses. Since it doesn't send the generated message directly, you're still in charge of editing and approving emails before they go out. How It Works: Email Trigger: activates when new emails reach the Gmail inbox Assessment: uses OpenAI gpt-4o and a JSON parser to determine if a response is necessary. Reply Generation: crafts a reply with OpenAI GPT-4 Turbo Draft Integration: after converting the text to html, it places the draft into the Gmail thread as a reply to the first message Set Up Overview (~10 minutes): OAuth Configuration (follow n8n instructions here): Setup Google OAuth in Google Cloud console. Make sure to add Gmail API with the modify scope. Add Google OAuth credentials in n8n. Make sure to add the n8n redirect URI to the Google Cloud Console consent screen settings. OpenAI Configuration: add OpenAI API Key in the credentials Tweaking the prompt: edit the system prompt in the "Generate email reply" node to suit your needs Detailed Walkthrough Check out this blog post where I go into more details on how I built this workflow. Reach out to me here if you need help building automations for your business.
nchourrout
Nicolas Chourrout
HTTP Request node
Merge node
+5

Personalize marketing emails using customer data and AI

This workflow uses AI to analyze customer sentiment from product feedback. If the sentiment is negative, AI will determine whether offering a coupon could improve the customer experience. Upon completing the sentiment analysis, the workflow creates a personalized email templates. This solution streamlines the process of engaging with customers post-purchase, particularly when addressing dissatisfaction, and ensures that outreach is both personalized and automated. This workflow won the 1st place in our last AI contest. Note that to use this template, you need to be on n8n version 1.19.4 or later.
n8n-team
n8n Team
Google Sheets node
HTTP Request node
+8

Scrape business emails from Google Maps without the use of any third party APIs

Who is this template for? This workflow template is designed for sales, marketing, and business development professionals who want a cost-effective and efficient way to generate leads. By leveraging n8n core nodes, it scrapes business emails from Google Maps without relying on third-party APIs or paid services, ensuring there are no additional costs involved. Ideal for small business owners, freelancers, and agencies, this template automates the process of collecting contact information for targeted outreach, making it a powerful tool for anyone looking to scale their lead generation efforts without incurring extra expenses. How it works This template streamlines email scraping from Google Maps using only n8n core nodes, ensuring a completely free and self-contained solution. Here’s how it operates: Input Queries You provide a list of queries, each consisting of keywords related to the type of business you want to target and the specific region or subregion you’re interested in. Iterates through Queries The workflow processes each query one at a time. For each query, it triggers a sub-workflow dedicated to handling the scraping tasks. Scrapes Google Maps for URLs Using these queries, the workflow scrapes Google Maps to collect URLs of business listings matching the provided criteria. Fetches HTML Content The workflow then fetches the HTML pages of the collected URLs for further processing. Extracts Emails Using a Code Node with custom JavaScript, the workflow runs regular expressions on the HTML content to extract business email addresses. Setup Add Queries: Open the first node, "Run Workflow" and input a list of queries, each containing the business keywords and the target region. Configure the Google Sheets Node: Open the Google Sheets node and select a document and specific sheet where the scraped results will be saved. Run the workflow: Click on "Test workflow" and watch your Google Sheets document gradually receive business email addresses. Customize as Needed: You can adjust the regular expressions in the Code Node to refine the email extraction logic or add logic to extract other kinds of information.
akramkadri
Akram Kadri

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon