Webhook node
Telegram node
Telegram Trigger node
+11

Summarize YouTube Videos & Chat About Content with GPT-4o-mini via Telegram

Published 7 days ago

Categories

Template description

Summarize YouTube Videos & Chat About Content with GPT-4o-mini via Telegram

Description

This n8n workflow automates the process of summarizing YouTube video transcripts and enables users to interact with the content through AI-powered question answering via Telegram. It leverages the GPT-4o-mini model to generate summaries and provide insights based on the video’s transcript.

How It Works

  1. Input: The workflow starts by receiving a YouTube video URL. This can be submitted through:

    • A Telegram chat message.
    • A webhook (e.g., triggered by a shortcut on Apple devices).
  2. Transcript Extraction: The URL is processed to extract the video transcript using the custom youtubeTranscripter community node (available here). The transcript is concatenated into a single text and stored in a Google Docs document.

  3. Summarization: The GPT-4o-mini AI model analyzes the transcript and generates a structured summary, including:

    • A general overview.
    • Key moments.
    • Instructions (if applicable).
      The summary is then sent back to the user via Telegram.
  4. Interactive Q&A: Users can ask questions about the video content via Telegram. The AI retrieves the stored transcript from Google Docs and provides accurate, context-based answers, which are sent back through Telegram.

Setup Instructions

To configure this workflow, follow these steps:

  1. Import the Workflow: Download the provided JSON template and import it into your n8n instance.
  2. Install the Community Node: Install the youtubeTranscripter community node via npm:
    npm install n8n-nodes-youtube-transcription-kasha
    
    Important: This node requires a self-hosted n8n instance due to its external dependencies.
  3. Configure Nodes:
    • Webhook: Set up the webhook to receive YouTube URLs. Alternatively, configure the Telegram node if using Telegram as the input method.
    • Google Docs: Provide valid credentials to enable writing the transcript to a Google Docs document.
    • AI Model: Set up the GPT-4o-mini model for summarization and Q&A functionality.
  4. Test the Workflow: Send a YouTube URL via your chosen input method (Telegram or webhook) and confirm that the summary is generated and delivered correctly.

Customization

  • Language: Adjust the AI prompts to generate summaries and answers in any desired language.
  • Output Format: Modify the summary structure by editing the prompt in the summarization node.
  • Input Methods: Replace the Telegram node with another messaging or input node to adapt the workflow to different platforms.

Who Can Benefit?

This template is perfect for:

  • Content Creators: Quickly summarize video content for repurposing or review.
  • Students and Researchers: Extract key insights from educational or informational videos efficiently.
  • General Users: Interact with video content via AI without needing to watch the full video.

Problem Solved

This workflow simplifies video content consumption by:

  • Automating the extraction and summarization of key points.
  • Enabling interactive Q&A to address specific questions without rewatching the video.

Additional Notes

  • Disclaimer: The youtubeTranscripter community node is required and only works on self-hosted n8n instances due to its reliance on external services.
  • Apple Users: Enhance your experience with a custom shortcut to share YouTube videos directly to the workflow. Download the shortcut here.

Share Template

More AI workflow templates

OpenAI Chat Model node
SerpApi (Google Search) node

AI agent chat

This workflow employs OpenAI's language models and SerpAPI to create a responsive, intelligent conversational agent. It comes equipped with manual chat triggers and memory buffer capabilities to ensure seamless interactions. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Merge node
+7

Scrape and summarize webpages with AI

This workflow integrates both web scraping and NLP functionalities. It uses HTML parsing to extract links, HTTP requests to fetch essay content, and AI-based summarization using GPT-4o. It's an excellent example of an end-to-end automated task that is not only efficient but also provides real value by summarizing valuable content. Note that to use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
WhatsApp Business Cloud node
+10

Building Your First WhatsApp Chatbot

This n8n template builds a simple WhatsApp chabot acting as a Sales Agent. The Agent is backed by a product catalog vector store to better answer user's questions. This template is intended to help introduce n8n users interested in building with WhatsApp. How it works This template is in 2 parts: creating the product catalog vector store and building the WhatsApp AI chatbot. A product brochure is imported via HTTP request node and its text contents extracted. The text contents are then uploaded to the in-memory vector store to build a knowledgebase for the chatbot. A WhatsApp trigger is used to capture messages from customers where non-text messages are filtered out. The customer's message is sent to the AI Agent which queries the product catalogue using the vector store tool. The Agent's response is sent back to the user via the WhatsApp node. How to use Once you've setup and configured your WhatsApp account and credentials First, populate the vector store by clicking the "Test Workflow" button. Next, activate the workflow to enable the WhatsApp chatbot. Message your designated WhatsApp number and you should receive a message from the AI sales agent. Tweak datasource and behaviour as required. Requirements WhatsApp Business Account OpenAI for LLM Customising this workflow Upgrade the vector store to Qdrant for persistance and production use-cases. Handle different WhatsApp message types for a more rich and engaging experience for customers.
jimleuk
Jimleuk
HTTP Request node
Markdown node
+5

AI agent that can scrape webpages

⚙️🛠️🚀🤖🦾 This template is a PoC of a ReAct AI Agent capable of fetching random pages (not only Wikipedia or Google search results). On the top part there's a manual chat node connected to a LangChain ReAct Agent. The agent has access to a workflow tool for getting page content. The page content extraction starts with converting query parameters into a JSON object. There are 3 pre-defined parameters: url** – an address of the page to fetch method** = full / simplified maxlimit** - maximum length for the final page. For longer pages an error message is returned back to the agent Page content fetching is a multistep process: An HTTP Request mode tries to get the page content. If the page content was successfuly retrieved, a series of post-processing begin: Extract HTML BODY; content Remove all unnecessary tags to recude the page size Further eliminate external URLs and IMG scr values (based on the method query parameter) Remaining HTML is converted to Markdown, thus recuding the page lengh even more while preserving the basic page structure The remaining content is sent back to an Agent if it's not too long (maxlimit = 70000 by default, see CONFIG node). NB: You can isolate the HTTP Request part into a separate workflow. Check the Workflow Tool description, it guides the agent to provide a query string with several parameters instead of a JSON object. Please reach out to Eduard is you need further assistance with you n8n workflows and automations! Note that to use this template, you need to be on n8n version 1.19.4 or later.
eduard
Eduard
Merge node
Telegram node
Telegram Trigger node
+2

Telegram AI Chatbot

The workflow starts by listening for messages from Telegram users. The message is then processed, and based on its content, different actions are taken. If it's a regular chat message, the workflow generates a response using the OpenAI API and sends it back to the user. If it's a command to create an image, the workflow generates an image using the OpenAI API and sends the image to the user. If the command is unsupported, an error message is sent. Throughout the workflow, there are additional nodes for displaying notes and simulating typing actions.
eduard
Eduard
Google Drive node
Binary Input Loader node
Embeddings OpenAI node
OpenAI Chat Model node
+5

Ask questions about a PDF using AI

The workflow first populates a Pinecone index with vectors from a Bitcoin whitepaper. Then, it waits for a manual chat message. When received, the chat message is turned into a vector and compared to the vectors in Pinecone. The most similar vectors are retrieved and passed to OpenAI for generating a chat response. Note that to use this template, you need to be on n8n version 1.19.4 or later.
davidn8n
David Roberts

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon